Math 4A Week 8 - November 24, 2014

1. Given two matrices, A and B, does $\mathrm{AB}=\mathrm{BA}$? If false, find a counter example.
2.

$$
C=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 3 \\
0 & 0 & 4
\end{array}\right] \quad D=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 4 & 4 \\
0 & 0 & 8
\end{array}\right]
$$

(i). Are C and D invertible? If yes, find the inverse.
(ii). C and D are upper triangular matrices. We can easily find the determinants by:
3. Given matrix A, does $A x=b$ have a unique solution?

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]
$$

4. Find the determinant of B.

$$
B=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
0 & 0 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]
$$

5. Given B from above, does $\operatorname{det}(5 B)=5 \operatorname{det}(B)$? Check with $I_{2 \times 2}$.
6. $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=4$. What is $\operatorname{det}\left[\begin{array}{cc}c & d \\ c-2 a & d-2 b\end{array}\right]$?
